С++ для начинающих. Урок 1. Компиляция

Обзор компиляторов

Существует множество компиляторов с языка C++, которые можно использовать для создания исполняемого кода под разные платформы. Проекты компиляторов можно классифицировать по следующим критериям.

  1. Коммерческие и некоммерческие проекты
  2. Уровень поддержки современных тенденций и стандартов языка
  3. Эффективность результирующего кода

Если на использование коммерческих компиляторов нет особых причин, то имеет смысл использовать компилятор с языка C++ из GNU коллекции компиляторов (GNU Compiler Collection). Этот компилятор есть в любом дистрибутиве Linux, и, он, также, доступен для платформы Windows как часть проекта MinGW (Minumum GNU for Windows). Для работы с компилятором удобнее всего использовать какой-нибудь дистрибутив Linux, но если вы твердо решили учиться программировать под Windows, то удобнее всего будет установить некоммерческую версию среды разработки QtCreator вместе с QtSDK ориентированную на MinGW. Обычно, на сайте производителя Qt можно найти инсталлятор под Windows, который сразу включает в себя среду разработки QtCreator и QtSDK. Следует только быть внимательным и выбрать ту версию, которая ориентирована на MinGW. Мы, возможно, за исключением особо оговариваемых случаев, будем использовать компилятор из дистрибутива Linux.

GNU коллекция компиляторов включает в себя несколько языков. Из них, группу языков Си составляет три компилятора.

  1. g++ — компилятор с языка C++.
  2. gcc — компилятор с языка C (GNU C Compiler).
  3. gcc -lobjc — Objective-C — это, фактически, язык C с некоторой макро-магией, которая доступна в объектной библиотеке objc. Ее следует поставить и указать через ключ компиляции -l.

Этапы компиляции

Процесс обработки текстовых файлов с кодом на языке C++, который упрощенно называют "компиляцией", на самом деле, состоит из четырех этапов.

  1. Препроцессинг — обработка текстовых файлов утилитой препроцессора, который производит замены текстов согласно правилам языка препроцессора C/C++. После препроцессора, тексты компилируемых файлов, обычно, значительно вырастают в размерах, но теперь в них содержится все, что потребуется компилятору для создания объектного файла.
  2. Ассемблирование — процесс превращения текста на языке C++ в текст на языке Ассемблера. Для компиляторов GNU используется синтаксис ассебмлера AT&T.
  3. Компилирование — процесс превращения текстов на языке Ассемблера в объектные файлы. Это файлы состоящие из кодов целевого процессора, но в которых еще не проставлены адреса объектов, которые находятся в других объектных файлах или библиотеках.
  4. Линковка — процесс объединения объектных файлов проекта и используемых библиотек в единую целевую сущность для целевой платформы. Это может быть исполняемая программа или библиотека статического или динамического типа.

Рассмотрим подробнее упомянутые выше стадии обработки текстовых файлов на языке C++.

Препроцессинг

Препроцессинг, это процедура ставшая традиционной для многих обработчиков разного рода описаний, в том числе и текстов с кодами программ. В общем случае, везде, где возникает необходимость в предварительной обработке текстов реализуется некоторый язык препроцессинга элементы которого ищутся препроцессором при обработке файла.

Основными элементами языка препроцессора являются директивы и макросимволы. Директивы вводятся с помощью символа "решетка" (#) в начале строки. Все, что следует за символом решетки и до конца строки считается директивой препроцессора. Директива препроцессора define вводит специальные макросимволы, которые могут быть использованы в следующих выражениях языка препроцессора.

На входе препроцессора мы имеем исходный файл с текстом на языке C++ включающим в себя элементы языка препроцессора.

На выходе препроцессора получаются так называемые компиляционные листы, состоящие исключительно из выражений языка C++, которых должно быть достаточно для создания объектных файлов на следующих этапах обработки. Последнее означает, что на момент использования каких-либо символов языка из других файлов, объявления этих символов должны присутствовать в компиляционном листе выше. Именно такие подстановки и призван осуществлять препроцессор. Часто, на вход препроцессора поступает файл размером в несколько десятков строк, а на выходе получается компиляционный лист из десятков тысяч строк.

Ассемблирование

Процесс ассемблирования с одной стороны достаточно прост для понимания и с другой стороны является наиболее сложным в реализации. По своей сути это процесс трансляции выражений одного языка в другой. Более конкретно, в данном случае, мы имеем на входе утилиты ассемблера файл с текстом на языке C++ (компиляционный лист), а на выходе мы получаем файл с текстом на языке Ассемблера. Язык Ассемблера это низкоуровневый язык который практически напрямую отображается на коды инструкций процессора целевой системы. Отличие только в том, что вместо числовых кодов инструкций используется англоязычная мнемоника и кроме непосредственно кодов инструкций присутствуют еще директивы описания сегментов и низкоуровневых данных, описываемых в терминологии байтов.

Ассемблирование не является обязательным процессом обработки файлов на языке C++. В данном случае, мы наблюдаем лишь общий подход в архитектуре проекта коллекции компиляторов GNU. Чтобы максимально объеденить разные языки в одну коллекцию, для каждого из языков реализуется свой транслятор на язык ассемблера и, при необходимости, препроцессор, а компилятор с языка ассемблера и линковщик делаются общими для всех языков коллекции.

Компиляция

В данном случае, мы имеем компилятор с языка ассемблера. Результатом его работы является объектный файл полученный на основе всего того текста, что был предоставлен в компиляционном листе. Поэтому можно говорить, что каждый объектный файл проекта соответствует одному компиляционному листу проекта.

Объектный файл — это бинарный файл, фактически состоящий из набора функций. Однако в исходном компиляционном листе не все вызываемые функции имели реализацию (или определение — definition). Не путайте с объявлением (declaration). Чтобы компиляционный лист можно было скомпилировать, необходимо, чтобы объявления всех вызываемых функций присутствовали в компиляционном листе до момента их использования. Однако, объявление, это не более чем имя функции и параметры ее вызова, которые позволяют во время компиляции правильно сформировать стек (передать переменные для вызова функции) и отметить, что тут надо вызвать функцию с указанным именем, адрес реализации которой пока не известен. Таким образом, объектные файлы сплошь состоят из таких «дыр» в которые надо прописать адреса из функций, которые реализованы в других объектных файлах или даже во внешних библиотеках.

Вообще, разница между объявлением (declaration) и определением (definition) состоит в том, что объявление (declaration) говорит об имени сущности и описывает ее внешний вид — например, тип объекта или параметры функции, в то время как определение (definition) описывает внутреннее устройство сущности: класс памяти и начальное значение объекта, тело функции и пр.

Исходя из этих определений, в компиляционном листе перед компиляцией должны существовать все объявления (declaration) всех тех сущностей, что используются в этом компиляционном листе. Причем их объявления должны находится до момента использования этих сущностей. Иначе, компилятор не сможет подготовить обращение к соответствующей сущности. Например, не сможет оформить передачу параметров через стек вызова функции и подготовиться к приему возвращаемого функцией значения.

Линковка

На этапе линковки выполняется объединение всех объектных файлов проекта, откомпилированных по соответствующим компиляционным листам проекта в единую сущность. Это может быть приложение, статическая или динамическая библиотека. Разница в бинарных заголовках целевых файлов и несколько различной внутренней организацией. Первичной задачей линковки следует назвать задачу по подстановке адресов вызова внешних объектов, которые были образованы в объектных файлах проекта. Соответствующие реализации сущностей с адресами их размещения должны находится в видимости линковщика. Эти сущности должны быть либо в объектных файлах, тогда они должны быть указаны в списке линковки, либо во внешних библиотеках функций, статических или динамических, тогда они должны быть указаны в списке внешних библиотек.

Средства сборки проекта

Традиционно, программа на языке C++ собирается средствами утилиты make исполняющей сценарий из файла Makefile. Сценарий сборки можно писать самостоятельно,
а можно создавать его автоматически с помощью всевозможных средств организации проекта. Среди наиболее известных средств организации проекта можно указать следующие.

  1. GNU Toolchain — Старейшая система сборки проектов известная еще по сочетанию команд configure-make-"make install".
  2. CMake — Кроссплатформенная система сборки, которая позволяет не только создать кроссплатформенный проект но и создать сценарий компиляции под любые известные среды разработки, для которых написаны соответствующие генераторы сценариев.
  3. QMake — Достаточно простая система сборки, специально реализованная для фреймворка Qt и широко используемая именно для сборки Qt-проектов. Может быть использована и просто для сборки проектов на языке C++. Имеет некоторые проблемы с выявлением сложных зависимостей метакомпиляции, специфической для Qt, поэтому, даже в проектах Qt, рекомендуется использование системы сборки CMake.

Современные версии QtCreator могут работать с проектами, которые используют как систему сборки QMake, так и систему сборки CMake.

Простой пример компиляции

Рассмотрим простейший проект "Hello world" на языке C++. Для его компиляции мы будет использовать консоль, в которой будем писать прямые команды компиляции. Это позволит нам максимально прочувствовать описанные выше этапы компиляции. Создадим файл с именем main.cpp и поместим в него следующий текст программы.

01. #include <iostream>
02. 
03. int main(int argc, char *argv[])
04. {
05.    std::cout << "Hello world" << std::endl;
06. 
07.    return 0;
08. }

В представленом примере выполнена нумерация строк, чтобы упростить пояснения по коду. В реальном коде нумерации не должно быть, так как она не входит в синтаксическое описание конструкций языка C++.

В первой строке кода записана директива включения файла с именем iostream в текст проекта. Как уже говорилось, все строки, которые начинаются со знака решетки (#) интерпретируются в языках C/C++ как директивы препроцессора. В данном случае, препроцессор, обнаружив директиву включения файла в текст программы, директиву include, выполнит включение всех строк указанного в директиве файла в то место программы, где стоит инструкция include. В результате этого у нас получится большой компиляционный лист, в котором будут присутствовать множество символов объявленных (declaration) в указанном файле. Включаемые файлы, содержащие объявления (declaration) называют заголовочными файлами. На языке жаргона можно услышать термины "header-файлы" или "хидеры".

Чтобы увидеть результат препроцессинга можно воспользоваться опцией -E компилятора g++. По умолчанию, в этом случае, результат препроцессинга будет выведен в стандартный поток вывода. Чтобы можно было удобно рассмотреть его, следует перенаправить стандартный поток вывода в какой-нибудь текстовый файл. В представленном ниже примере это будет файл main.E.

g++ -E main.cpp > main.E

В третьей строке программы описана функция main(). В контексте операционной системы, каждое приложение должно иметь точку входа. Такой точкой входа в операционных системах *nix является функция main(). Именно с нее начинается исполнение приложения после его загрузки в память вычислительной системы. Так как операционная система Windows имеет корни тесно переплетенные с историей *nix, и, фактически, является далеким проприентарным клоном *nix, то и для нее справедливо данное правило. Поэтому, если вы пишете приложение, то начинается оно всегда с функции main().

При вызове функции main(), операционная система передает в нее два параметра. Первый параметр — это количество параметров запуска приложения, а второй — строковый массив этих параметров. В нашем случае, мы их не используем.

В пятой строке мы обращаемся к предопределенному объекту cout из пространства имен std, который связан с потоком вывода приложения. Используя синтаксис операций, определенных для указанного объекта, мы передаем в него строку "Hello world" и символ возврата каретки и переноса строки.

В седьмой строке мы возвращаем код 0, как код возврата функции main(). В организации процессов в операционной системы, это число будет восприниматься как код возврата приложения.

Следующим шагом проведения эксперимента выполним останов компиляции файла main.cpp после этапа ассемблирования. Для этого воспользуемся ключом -S для компилятора g++. Здесь и далее, знак доллара ($) обозначает стандартное приглашение к вводу команды в консоли *nix. Писать знак доллара не требуется.

$ g++ -S main.cpp

Выполнив остановку компиляции после этапа ассемблирование, возможно будет интересно выполнить остановку компиляции и после этапа, который собственно, и выполняет компиляцию, т.е. превращение ассемблерного кода в объектный файл, который впоследствии надо будет слинковать с библиотеками, в которых будет найдено реализация объекта cout, который используется в нашей программе как некий библиотечный объект.

Для остановки компиляции после, собственно, компиляции следует воспользоваться ключом -c для компилятора g++.

$ g++ -с main.cpp

Наконец, если нас не интересуют эксперименты с остановками компиляции на разных этапах и если мы просто хотим получить из нашего файла на языке C++ исполняемую программу, то следует выполнить следующую команду.

$ g++ main.cpp

В результате исполнения этой команды появится файл a.out который и представляет собой результат компиляции — исполняемый файл программы. Запустим его и посмотрим на результат выполнения. При работе в операционной системе Windows, результатом компиляции будет файл с расширением exe. Возможно, он будет называться main.exe.

$ ./a.out

Добавить комментарий